3.13.94 \(\int \cos ^{\frac {5}{2}}(c+d x) (a+b \sec (c+d x)) (A+B \sec (c+d x)+C \sec ^2(c+d x)) \, dx\) [1294]

3.13.94.1 Optimal result
3.13.94.2 Mathematica [C] (warning: unable to verify)
3.13.94.3 Rubi [A] (verified)
3.13.94.4 Maple [B] (verified)
3.13.94.5 Fricas [C] (verification not implemented)
3.13.94.6 Sympy [F(-1)]
3.13.94.7 Maxima [F]
3.13.94.8 Giac [F]
3.13.94.9 Mupad [B] (verification not implemented)

3.13.94.1 Optimal result

Integrand size = 41, antiderivative size = 116 \[ \int \cos ^{\frac {5}{2}}(c+d x) (a+b \sec (c+d x)) \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right ) \, dx=\frac {2 (3 a A+5 b B+5 a C) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{5 d}+\frac {2 (A b+a B+3 b C) \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{3 d}+\frac {2 (A b+a B) \sqrt {\cos (c+d x)} \sin (c+d x)}{3 d}+\frac {2 a A \cos ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{5 d} \]

output
2/5*(3*A*a+5*B*b+5*C*a)*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*El 
lipticE(sin(1/2*d*x+1/2*c),2^(1/2))/d+2/3*(A*b+B*a+3*C*b)*(cos(1/2*d*x+1/2 
*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticF(sin(1/2*d*x+1/2*c),2^(1/2))/d+2/ 
5*a*A*cos(d*x+c)^(3/2)*sin(d*x+c)/d+2/3*(A*b+B*a)*sin(d*x+c)*cos(d*x+c)^(1 
/2)/d
 
3.13.94.2 Mathematica [C] (warning: unable to verify)

Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.

Time = 10.33 (sec) , antiderivative size = 1569, normalized size of antiderivative = 13.53 \[ \int \cos ^{\frac {5}{2}}(c+d x) (a+b \sec (c+d x)) \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right ) \, dx =\text {Too large to display} \]

input
Integrate[Cos[c + d*x]^(5/2)*(a + b*Sec[c + d*x])*(A + B*Sec[c + d*x] + C* 
Sec[c + d*x]^2),x]
 
output
(Cos[c + d*x]^(7/2)*(a + b*Sec[c + d*x])*(A + B*Sec[c + d*x] + C*Sec[c + d 
*x]^2)*((-4*(3*a*A + 5*b*B + 5*a*C)*Cot[c])/(5*d) + (4*(A*b + a*B)*Cos[d*x 
]*Sin[c])/(3*d) + (2*a*A*Cos[2*d*x]*Sin[2*c])/(5*d) + (4*(A*b + a*B)*Cos[c 
]*Sin[d*x])/(3*d) + (2*a*A*Cos[2*c]*Sin[2*d*x])/(5*d)))/((b + a*Cos[c + d* 
x])*(A + 2*C + 2*B*Cos[c + d*x] + A*Cos[2*c + 2*d*x])) - (4*A*b*Cos[c + d* 
x]^3*Csc[c]*HypergeometricPFQ[{1/4, 1/2}, {5/4}, Sin[d*x - ArcTan[Cot[c]]] 
^2]*(a + b*Sec[c + d*x])*(A + B*Sec[c + d*x] + C*Sec[c + d*x]^2)*Sec[d*x - 
 ArcTan[Cot[c]]]*Sqrt[1 - Sin[d*x - ArcTan[Cot[c]]]]*Sqrt[-(Sqrt[1 + Cot[c 
]^2]*Sin[c]*Sin[d*x - ArcTan[Cot[c]]])]*Sqrt[1 + Sin[d*x - ArcTan[Cot[c]]] 
])/(3*d*(b + a*Cos[c + d*x])*(A + 2*C + 2*B*Cos[c + d*x] + A*Cos[2*c + 2*d 
*x])*Sqrt[1 + Cot[c]^2]) - (4*a*B*Cos[c + d*x]^3*Csc[c]*HypergeometricPFQ[ 
{1/4, 1/2}, {5/4}, Sin[d*x - ArcTan[Cot[c]]]^2]*(a + b*Sec[c + d*x])*(A + 
B*Sec[c + d*x] + C*Sec[c + d*x]^2)*Sec[d*x - ArcTan[Cot[c]]]*Sqrt[1 - Sin[ 
d*x - ArcTan[Cot[c]]]]*Sqrt[-(Sqrt[1 + Cot[c]^2]*Sin[c]*Sin[d*x - ArcTan[C 
ot[c]]])]*Sqrt[1 + Sin[d*x - ArcTan[Cot[c]]]])/(3*d*(b + a*Cos[c + d*x])*( 
A + 2*C + 2*B*Cos[c + d*x] + A*Cos[2*c + 2*d*x])*Sqrt[1 + Cot[c]^2]) - (4* 
b*C*Cos[c + d*x]^3*Csc[c]*HypergeometricPFQ[{1/4, 1/2}, {5/4}, Sin[d*x - A 
rcTan[Cot[c]]]^2]*(a + b*Sec[c + d*x])*(A + B*Sec[c + d*x] + C*Sec[c + d*x 
]^2)*Sec[d*x - ArcTan[Cot[c]]]*Sqrt[1 - Sin[d*x - ArcTan[Cot[c]]]]*Sqrt[-( 
Sqrt[1 + Cot[c]^2]*Sin[c]*Sin[d*x - ArcTan[Cot[c]]])]*Sqrt[1 + Sin[d*x ...
 
3.13.94.3 Rubi [A] (verified)

Time = 0.74 (sec) , antiderivative size = 122, normalized size of antiderivative = 1.05, number of steps used = 13, number of rules used = 13, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.317, Rules used = {3042, 4600, 3042, 3512, 27, 3042, 3502, 27, 3042, 3227, 3042, 3119, 3120}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \cos ^{\frac {5}{2}}(c+d x) (a+b \sec (c+d x)) \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right ) \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \cos (c+d x)^{5/2} (a+b \sec (c+d x)) \left (A+B \sec (c+d x)+C \sec (c+d x)^2\right )dx\)

\(\Big \downarrow \) 4600

\(\displaystyle \int \frac {(a \cos (c+d x)+b) \left (A \cos ^2(c+d x)+B \cos (c+d x)+C\right )}{\sqrt {\cos (c+d x)}}dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\left (a \sin \left (c+d x+\frac {\pi }{2}\right )+b\right ) \left (A \sin \left (c+d x+\frac {\pi }{2}\right )^2+B \sin \left (c+d x+\frac {\pi }{2}\right )+C\right )}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx\)

\(\Big \downarrow \) 3512

\(\displaystyle \frac {2}{5} \int \frac {5 (A b+a B) \cos ^2(c+d x)+(3 a A+5 b B+5 a C) \cos (c+d x)+5 b C}{2 \sqrt {\cos (c+d x)}}dx+\frac {2 a A \sin (c+d x) \cos ^{\frac {3}{2}}(c+d x)}{5 d}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {1}{5} \int \frac {5 (A b+a B) \cos ^2(c+d x)+(3 a A+5 b B+5 a C) \cos (c+d x)+5 b C}{\sqrt {\cos (c+d x)}}dx+\frac {2 a A \sin (c+d x) \cos ^{\frac {3}{2}}(c+d x)}{5 d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{5} \int \frac {5 (A b+a B) \sin \left (c+d x+\frac {\pi }{2}\right )^2+(3 a A+5 b B+5 a C) \sin \left (c+d x+\frac {\pi }{2}\right )+5 b C}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx+\frac {2 a A \sin (c+d x) \cos ^{\frac {3}{2}}(c+d x)}{5 d}\)

\(\Big \downarrow \) 3502

\(\displaystyle \frac {1}{5} \left (\frac {2}{3} \int \frac {5 (A b+3 C b+a B)+3 (3 a A+5 b B+5 a C) \cos (c+d x)}{2 \sqrt {\cos (c+d x)}}dx+\frac {10 (a B+A b) \sin (c+d x) \sqrt {\cos (c+d x)}}{3 d}\right )+\frac {2 a A \sin (c+d x) \cos ^{\frac {3}{2}}(c+d x)}{5 d}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {1}{5} \left (\frac {1}{3} \int \frac {5 (A b+3 C b+a B)+3 (3 a A+5 b B+5 a C) \cos (c+d x)}{\sqrt {\cos (c+d x)}}dx+\frac {10 (a B+A b) \sin (c+d x) \sqrt {\cos (c+d x)}}{3 d}\right )+\frac {2 a A \sin (c+d x) \cos ^{\frac {3}{2}}(c+d x)}{5 d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{5} \left (\frac {1}{3} \int \frac {5 (A b+3 C b+a B)+3 (3 a A+5 b B+5 a C) \sin \left (c+d x+\frac {\pi }{2}\right )}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx+\frac {10 (a B+A b) \sin (c+d x) \sqrt {\cos (c+d x)}}{3 d}\right )+\frac {2 a A \sin (c+d x) \cos ^{\frac {3}{2}}(c+d x)}{5 d}\)

\(\Big \downarrow \) 3227

\(\displaystyle \frac {1}{5} \left (\frac {1}{3} \left (5 (a B+A b+3 b C) \int \frac {1}{\sqrt {\cos (c+d x)}}dx+3 (3 a A+5 a C+5 b B) \int \sqrt {\cos (c+d x)}dx\right )+\frac {10 (a B+A b) \sin (c+d x) \sqrt {\cos (c+d x)}}{3 d}\right )+\frac {2 a A \sin (c+d x) \cos ^{\frac {3}{2}}(c+d x)}{5 d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{5} \left (\frac {1}{3} \left (5 (a B+A b+3 b C) \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx+3 (3 a A+5 a C+5 b B) \int \sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}dx\right )+\frac {10 (a B+A b) \sin (c+d x) \sqrt {\cos (c+d x)}}{3 d}\right )+\frac {2 a A \sin (c+d x) \cos ^{\frac {3}{2}}(c+d x)}{5 d}\)

\(\Big \downarrow \) 3119

\(\displaystyle \frac {1}{5} \left (\frac {1}{3} \left (5 (a B+A b+3 b C) \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx+\frac {6 E\left (\left .\frac {1}{2} (c+d x)\right |2\right ) (3 a A+5 a C+5 b B)}{d}\right )+\frac {10 (a B+A b) \sin (c+d x) \sqrt {\cos (c+d x)}}{3 d}\right )+\frac {2 a A \sin (c+d x) \cos ^{\frac {3}{2}}(c+d x)}{5 d}\)

\(\Big \downarrow \) 3120

\(\displaystyle \frac {1}{5} \left (\frac {1}{3} \left (\frac {10 \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right ) (a B+A b+3 b C)}{d}+\frac {6 E\left (\left .\frac {1}{2} (c+d x)\right |2\right ) (3 a A+5 a C+5 b B)}{d}\right )+\frac {10 (a B+A b) \sin (c+d x) \sqrt {\cos (c+d x)}}{3 d}\right )+\frac {2 a A \sin (c+d x) \cos ^{\frac {3}{2}}(c+d x)}{5 d}\)

input
Int[Cos[c + d*x]^(5/2)*(a + b*Sec[c + d*x])*(A + B*Sec[c + d*x] + C*Sec[c 
+ d*x]^2),x]
 
output
(2*a*A*Cos[c + d*x]^(3/2)*Sin[c + d*x])/(5*d) + (((6*(3*a*A + 5*b*B + 5*a* 
C)*EllipticE[(c + d*x)/2, 2])/d + (10*(A*b + a*B + 3*b*C)*EllipticF[(c + d 
*x)/2, 2])/d)/3 + (10*(A*b + a*B)*Sqrt[Cos[c + d*x]]*Sin[c + d*x])/(3*d))/ 
5
 

3.13.94.3.1 Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3119
Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)* 
(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 3120
Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2 
)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 3227
Int[((b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x 
_)]), x_Symbol] :> Simp[c   Int[(b*Sin[e + f*x])^m, x], x] + Simp[d/b   Int 
[(b*Sin[e + f*x])^(m + 1), x], x] /; FreeQ[{b, c, d, e, f, m}, x]
 

rule 3502
Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((A_.) + (B_.)*sin[(e_.) 
+ (f_.)*(x_)] + (C_.)*sin[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Simp[(-C)*Co 
s[e + f*x]*((a + b*Sin[e + f*x])^(m + 1)/(b*f*(m + 2))), x] + Simp[1/(b*(m 
+ 2))   Int[(a + b*Sin[e + f*x])^m*Simp[A*b*(m + 2) + b*C*(m + 1) + (b*B*(m 
 + 2) - a*C)*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, e, f, A, B, C, m}, x] 
 &&  !LtQ[m, -1]
 

rule 3512
Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((c_) + (d_.)*sin[(e_.) + 
 (f_.)*(x_)])*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (f 
_.)*(x_)]^2), x_Symbol] :> Simp[(-C)*d*Cos[e + f*x]*Sin[e + f*x]*((a + b*Si 
n[e + f*x])^(m + 1)/(b*f*(m + 3))), x] + Simp[1/(b*(m + 3))   Int[(a + b*Si 
n[e + f*x])^m*Simp[a*C*d + A*b*c*(m + 3) + b*(B*c*(m + 3) + d*(C*(m + 2) + 
A*(m + 3)))*Sin[e + f*x] - (2*a*C*d - b*(c*C + B*d)*(m + 3))*Sin[e + f*x]^2 
, x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, C, m}, x] && NeQ[b*c - a*d, 
0] && NeQ[a^2 - b^2, 0] &&  !LtQ[m, -1]
 

rule 4600
Int[(cos[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*((a_) + (b_.)*sec[(e_.) + (f_.)*(x 
_)])^(m_.)*((A_.) + (B_.)*sec[(e_.) + (f_.)*(x_)] + (C_.)*sec[(e_.) + (f_.) 
*(x_)]^2), x_Symbol] :> Simp[d^(m + 2)   Int[(b + a*Cos[e + f*x])^m*(d*Cos[ 
e + f*x])^(n - m - 2)*(C + B*Cos[e + f*x] + A*Cos[e + f*x]^2), x], x] /; Fr 
eeQ[{a, b, d, e, f, A, B, C, n}, x] &&  !IntegerQ[n] && IntegerQ[m]
 
3.13.94.4 Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(464\) vs. \(2(156)=312\).

Time = 81.50 (sec) , antiderivative size = 465, normalized size of antiderivative = 4.01

method result size
default \(-\frac {2 \sqrt {\left (2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \left (-24 a A \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{6}+\left (24 a A +20 A b +20 B a \right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4} \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+\left (-6 a A -10 A b -10 B a \right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+5 A b \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )-9 A \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) a +5 B a \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )-15 B \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) b +15 C b \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )-15 C \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) a \right )}{15 \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, d}\) \(465\)

input
int(cos(d*x+c)^(5/2)*(a+b*sec(d*x+c))*(A+B*sec(d*x+c)+C*sec(d*x+c)^2),x,me 
thod=_RETURNVERBOSE)
 
output
-2/15*((2*cos(1/2*d*x+1/2*c)^2-1)*sin(1/2*d*x+1/2*c)^2)^(1/2)*(-24*a*A*cos 
(1/2*d*x+1/2*c)*sin(1/2*d*x+1/2*c)^6+(24*A*a+20*A*b+20*B*a)*sin(1/2*d*x+1/ 
2*c)^4*cos(1/2*d*x+1/2*c)+(-6*A*a-10*A*b-10*B*a)*sin(1/2*d*x+1/2*c)^2*cos( 
1/2*d*x+1/2*c)+5*A*b*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2- 
1)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))-9*A*(sin(1/2*d*x+1/2*c)^2)^ 
(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2 
))*a+5*B*a*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*E 
llipticF(cos(1/2*d*x+1/2*c),2^(1/2))-15*B*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2* 
sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))*b+15*C 
*b*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticF 
(cos(1/2*d*x+1/2*c),2^(1/2))-15*C*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2* 
d*x+1/2*c)^2-1)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))*a)/(-2*sin(1/2 
*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/sin(1/2*d*x+1/2*c)/(2*cos(1/2*d* 
x+1/2*c)^2-1)^(1/2)/d
 
3.13.94.5 Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.12 (sec) , antiderivative size = 195, normalized size of antiderivative = 1.68 \[ \int \cos ^{\frac {5}{2}}(c+d x) (a+b \sec (c+d x)) \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right ) \, dx=\frac {2 \, {\left (3 \, A a \cos \left (d x + c\right ) + 5 \, B a + 5 \, A b\right )} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right ) - 5 \, \sqrt {2} {\left (i \, B a + i \, {\left (A + 3 \, C\right )} b\right )} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right ) - 5 \, \sqrt {2} {\left (-i \, B a - i \, {\left (A + 3 \, C\right )} b\right )} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right ) - 3 \, \sqrt {2} {\left (-i \, {\left (3 \, A + 5 \, C\right )} a - 5 i \, B b\right )} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right )\right ) - 3 \, \sqrt {2} {\left (i \, {\left (3 \, A + 5 \, C\right )} a + 5 i \, B b\right )} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right )\right )}{15 \, d} \]

input
integrate(cos(d*x+c)^(5/2)*(a+b*sec(d*x+c))*(A+B*sec(d*x+c)+C*sec(d*x+c)^2 
),x, algorithm="fricas")
 
output
1/15*(2*(3*A*a*cos(d*x + c) + 5*B*a + 5*A*b)*sqrt(cos(d*x + c))*sin(d*x + 
c) - 5*sqrt(2)*(I*B*a + I*(A + 3*C)*b)*weierstrassPInverse(-4, 0, cos(d*x 
+ c) + I*sin(d*x + c)) - 5*sqrt(2)*(-I*B*a - I*(A + 3*C)*b)*weierstrassPIn 
verse(-4, 0, cos(d*x + c) - I*sin(d*x + c)) - 3*sqrt(2)*(-I*(3*A + 5*C)*a 
- 5*I*B*b)*weierstrassZeta(-4, 0, weierstrassPInverse(-4, 0, cos(d*x + c) 
+ I*sin(d*x + c))) - 3*sqrt(2)*(I*(3*A + 5*C)*a + 5*I*B*b)*weierstrassZeta 
(-4, 0, weierstrassPInverse(-4, 0, cos(d*x + c) - I*sin(d*x + c))))/d
 
3.13.94.6 Sympy [F(-1)]

Timed out. \[ \int \cos ^{\frac {5}{2}}(c+d x) (a+b \sec (c+d x)) \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right ) \, dx=\text {Timed out} \]

input
integrate(cos(d*x+c)**(5/2)*(a+b*sec(d*x+c))*(A+B*sec(d*x+c)+C*sec(d*x+c)* 
*2),x)
 
output
Timed out
 
3.13.94.7 Maxima [F]

\[ \int \cos ^{\frac {5}{2}}(c+d x) (a+b \sec (c+d x)) \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right ) \, dx=\int { {\left (C \sec \left (d x + c\right )^{2} + B \sec \left (d x + c\right ) + A\right )} {\left (b \sec \left (d x + c\right ) + a\right )} \cos \left (d x + c\right )^{\frac {5}{2}} \,d x } \]

input
integrate(cos(d*x+c)^(5/2)*(a+b*sec(d*x+c))*(A+B*sec(d*x+c)+C*sec(d*x+c)^2 
),x, algorithm="maxima")
 
output
integrate((C*sec(d*x + c)^2 + B*sec(d*x + c) + A)*(b*sec(d*x + c) + a)*cos 
(d*x + c)^(5/2), x)
 
3.13.94.8 Giac [F]

\[ \int \cos ^{\frac {5}{2}}(c+d x) (a+b \sec (c+d x)) \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right ) \, dx=\int { {\left (C \sec \left (d x + c\right )^{2} + B \sec \left (d x + c\right ) + A\right )} {\left (b \sec \left (d x + c\right ) + a\right )} \cos \left (d x + c\right )^{\frac {5}{2}} \,d x } \]

input
integrate(cos(d*x+c)^(5/2)*(a+b*sec(d*x+c))*(A+B*sec(d*x+c)+C*sec(d*x+c)^2 
),x, algorithm="giac")
 
output
integrate((C*sec(d*x + c)^2 + B*sec(d*x + c) + A)*(b*sec(d*x + c) + a)*cos 
(d*x + c)^(5/2), x)
 
3.13.94.9 Mupad [B] (verification not implemented)

Time = 18.14 (sec) , antiderivative size = 162, normalized size of antiderivative = 1.40 \[ \int \cos ^{\frac {5}{2}}(c+d x) (a+b \sec (c+d x)) \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right ) \, dx=\frac {2\,A\,b\,\left (\sqrt {\cos \left (c+d\,x\right )}\,\sin \left (c+d\,x\right )+\mathrm {F}\left (\frac {c}{2}+\frac {d\,x}{2}\middle |2\right )\right )}{3\,d}+\frac {2\,B\,a\,\left (\sqrt {\cos \left (c+d\,x\right )}\,\sin \left (c+d\,x\right )+\mathrm {F}\left (\frac {c}{2}+\frac {d\,x}{2}\middle |2\right )\right )}{3\,d}+\frac {2\,B\,b\,\mathrm {E}\left (\frac {c}{2}+\frac {d\,x}{2}\middle |2\right )}{d}+\frac {2\,C\,a\,\mathrm {E}\left (\frac {c}{2}+\frac {d\,x}{2}\middle |2\right )}{d}+\frac {2\,C\,b\,\mathrm {F}\left (\frac {c}{2}+\frac {d\,x}{2}\middle |2\right )}{d}-\frac {2\,A\,a\,{\cos \left (c+d\,x\right )}^{7/2}\,\sin \left (c+d\,x\right )\,{{}}_2{\mathrm {F}}_1\left (\frac {1}{2},\frac {7}{4};\ \frac {11}{4};\ {\cos \left (c+d\,x\right )}^2\right )}{7\,d\,\sqrt {{\sin \left (c+d\,x\right )}^2}} \]

input
int(cos(c + d*x)^(5/2)*(a + b/cos(c + d*x))*(A + B/cos(c + d*x) + C/cos(c 
+ d*x)^2),x)
 
output
(2*A*b*(cos(c + d*x)^(1/2)*sin(c + d*x) + ellipticF(c/2 + (d*x)/2, 2)))/(3 
*d) + (2*B*a*(cos(c + d*x)^(1/2)*sin(c + d*x) + ellipticF(c/2 + (d*x)/2, 2 
)))/(3*d) + (2*B*b*ellipticE(c/2 + (d*x)/2, 2))/d + (2*C*a*ellipticE(c/2 + 
 (d*x)/2, 2))/d + (2*C*b*ellipticF(c/2 + (d*x)/2, 2))/d - (2*A*a*cos(c + d 
*x)^(7/2)*sin(c + d*x)*hypergeom([1/2, 7/4], 11/4, cos(c + d*x)^2))/(7*d*( 
sin(c + d*x)^2)^(1/2))